LOYOLA COLLEGE (AUTONOMOUS), CHENNAI- 6000034
M.Sc. DEGREE EXAMINATION- MATHEMATICS

FIRST SEMESTER - NOVEMBER 2015
MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS
Date: 07/11/2015
Time : 01:00-04:00
Dept. No. \square MAX: 100 MARKS

Answer all questions. Each question carries 20 marks.

1. (a) Let $x_{p}(t)$ be any particular solution of $L[x(t)]=d(t)$ and $x_{h}(t)$ be the general solution of $L[x(t)]=0$. Show that $x(t)=x_{p}(t)+x_{h}(t)$ is the general solution of $L[x(t)]=d(t)$.
(OR)
(b) State and prove Abel's formula.
(c) Explain the method of variation of parameters.
(OR)
(d) If Wronskian of two functions $x_{1}(t)$ and $x_{2}(t)$ on I is non-zero for at least one point on the interval I, prove that $x_{1}(t)$ and $x_{2}(t)$ are linearly independent on I. Check whether the given sets of functions are linearly independent. (i) $\sin x, \sin 2 x, \sin 3 x$ on $I=[0,2 \pi]$ (ii) $1+x, x^{2}+x, 2 x^{2}-x-3$ and (iii) $1, x, x^{2}, \ldots, x^{n}$
2. (a) Find the indicial equation of $2 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$.
(OR)
(b) State and prove Rodrigure's formula.
(c) Show that $\frac{1}{\sqrt{1}-2 t x+t^{2}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x)$ if $|t|<1$ and $|x| \leq 1$.
(OR)
(d) Solve $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+k y=0$ by Frobenius method.
3. (a) Obtain the generating function of Bessel's function.
(OR)
(b) Prove that $J_{n}^{\prime}(x)=\frac{n}{x} J_{n}(x)-J_{n+1}(x)$.
(c) State and prove the integral representation of Bessel's function.
(OR)
(d) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$.
4. (a) Is there any general criterion to ensure the Lipschitz condition? Justify.
(OR)
(b) For distinct parameters λ and μ, let x and y be the corresponding solutions of the Strum-Liouville problem such that $[p W(x, y)]_{A}^{B}=0$. Prove that $\int_{A}^{B} r(s) x(s) y(s) d s=0$.
(c) Prove that $x(t)$ is a solution of $L[x(t)]+f(t)=0, a \leq t \leq b$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$.
(OR)
(d) State and prove Picard's theorem for boundary value problem.
5. (a) Explain stable solution with an example.
(5)
(OR)
(b) Prove that the system $x_{1}^{\prime}=-3 x_{1}+k x_{2}, x_{2}^{\prime}=-2 x_{1}-4 x_{2}$ is asymptotically stable for all x.
(c) Explain the stability of $\mathrm{x}^{\prime}=\mathrm{Ax}$ by Lyapunov's method.
(OR)
(d) State and prove the fundamental theorems on the stability of non-autonomous systems.
