LOYOLA COLLEGE (AUTONOMOUS), CHENNAI- 6000034 **M.Sc.** DEGREE EXAMINATION- MATHEMATICS FIRST SEMESTER – NOVEMBER 2015 CEAT LUX VEST **MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS** Date : 07/11/2015 Dept. No. Time : 01:00-04:00 MAX: 100 MARKS Answer all questions. Each question carries 20 marks. 1. (a) Let $x_p(t)$ be any particular solution of L[x(t)] = d(t) and $x_h(t)$ be the general solution of L[x(t)] = 0. Show that $x(t) = x_p(t) + x_h(t)$ is the general solution of L[x(t)] = d(t). (5) (OR)(b) State and prove Abel's formula. (5) (c) Explain the method of variation of parameters. (15) (OR)(d) If Wronskian of two functions $x_1(t)$ and $x_2(t)$ on I is non-zero for at least one point on the interval I, prove that $x_1(t)$ and $x_2(t)$ are linearly independent on I. Check whether the given sets of functions are linearly independent. (i) sin x, sin 2x, sin 3x on $I = [0,2\pi]$ (ii) 1 + x, $x^2 + x$, $2x^2 - x - 3$ and (iii) 1, x, x^2 , ..., x^n (15)2. (a) Find the indicial equation of $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$. (5) (OR)(b) State and prove Rodrigure's formula. (5) (c) Show that $\frac{1}{1-2tx+t^2} = \sum_{l=0}^{\infty} t^l P_l(x)$ if |t| < 1 and $|x| \le 1$. (15) (OR) (d) Solve $(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + ky = 0$ by Frobenius method. (15) (a) Obtain the generating function of Bessel's function. 3. (5) (OR)(b) Prove that $J'_n(x) = \frac{n}{x} J_n(x) - J_{n+1}(x)$. (5) (c) State and prove the integral representation of Bessel's function. (15) (OR)

(d) Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0.$ (15)

4.	(a) Is there any general criterion to ensure the Lipschitz condition? Justify. (OR)	(5)	
	(b) For distinct parameters λ and μ , let x and y be the corresponding solutions of the Strum-Liouville problem		
	such that $[pW(x,y)]_A^B = 0$. Prove that $\int_A^B r(s)x(s)y(s)ds = 0$.	(5)	
	(c) Prove that $x(t)$ is a solution of $L[x(t)] + f(t) = 0$, $a \le t \le b$ if and only if $x(t) = \frac{b}{a}G(t,s)f(s)ds$.		
		(15)	
	(OR)		
	(d) State and prove Picard's theorem for boundary value problem.	(15)	
5	(a) Explain stable solution with an example.	(5)	
υ.	(a) Explain shore solution with an enamplet		
	(b) Prove that the system $x'_1 = -3x_1 + kx_2$, $x'_2 = -2x_1 - 4x_2$ is asymptotically stable for all x. (5)		
	(c) Explain the stability of $x' = A x$ by Lyapunov's method.	(15)	
	(d) State and prove the fundamental theorems on the stability of non-autonomo	us systems. (15)	
